Semi-bounded restrictions of Dirac type operators and the unique continuation property

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsing and Dirac-type Operators

We analyze the limit of the spectrum of a geometric Dirac-type operator under a collapse with bounded diameter and bounded sectional curvature. In the case of a smooth limit space B, we show that the limit of the spectrum is given by the spectrum of a certain first-order differential operator on B, which can be constructed using superconnections. In the case of a general limit space X , we expr...

متن کامل

Unique Continuation Property for the Kadomtsev-petviashvili (kp-ii) Equation

We generalize a method introduced by Bourgain in [2] based on complex analysis to address two spatial dimensional models and prove that if a sufficiently smooth solution to the initial value problem associated with the Kadomtsev-Petviashvili (KP-II) equation (ut + uxxx + uux)x + uyy = 0, (x, y) ∈ R, t ∈ R, is supported compactly in a nontrivial time interval then it vanishes identically.

متن کامل

On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

متن کامل

Unique continuation property for a higher order nonlinear Schrödinger equation

We prove that, if a sufficiently smooth solution u to the initial value problem associated with the equation ∂t u+ iα∂2 xu+ β∂3 xu+ iγ |u|2u+ δ|u|∂xu+ u∂xu= 0, x, t ∈R, is supported in a half line at two different instants of time then u≡ 0. To prove this result we derive a new Carleman type estimate by extending the method introduced by Kenig et al. in [Ann. Inst. H. Poincaré Anal. Non Linéair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2001

ISSN: 0926-2245

DOI: 10.1016/s0926-2245(01)00056-0